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Abstract, We wnsider the problem of the sew-adjoint extension of Hamilton operators for 
charged quantum particles in the pure Ahxonov-Bohm potential (infinitely thin solenoid), We 
pment a pragmatic approach to the problem based on the orthogonalization of the radial solutions 
for different quantum numbers. Then we discuss a model of a scalar particle with a magnetic 
moment which allows us to explain why the self-adjoint exlension wntains h i w a r y  parameters 
and give a physical interpretation. 

1. Introduction 

The theoretical prediction of the Aharonov-Bohm (AB) effect [I] in 1959 was one of the 
most intriguing results of quantum theory. Now the AB effect has long been recognized 
for its crucial role in demonstrating the specific status of electromagnetism in quantum 
theory. Besides the usual local influence of electric and magnetic fields on charged particles, 
it manifests non-local quantum effects from electromagnetic fluxes Q, = $ A i  dri or the 
corresponding phase factors, exp(ie $ A: dri)  [15]. By shifting the phases of wavefunctions 
these gaugeinvariant factors influence interference patterns, the energy spectra of quantum 
particles, and cause other quantum phenomena (for a detailed exposition of theoretical and 
experimental attempts to investigate the AB effect see [12.131). One of these phenomena is 
the scattering of charged particles by a magnetic string [ l ]  which arises due to distinctive 
interference of the particle wave. It was shown in [ 141 that AB scattering is accompanied 
by electromagnetic radiation, and its angular distribution and polarization were calculated 
in [14,4]. A clear example of the AB effect for bound states is the splitting of Landau 
energy terms for charged particles in a uniform magnetic field 191. In addition there exist 
remarkable applications of the AB effect in solid-state physics [IO, 11 1. 

The issue of spin appended further peculiarity to the status of the AB effect. It was 
found that the interaction between the magnetic momentum of a charged particle and the 
magnetic field of the AB string essentially changes the behaviour of the wavefunctions at 
the magnetic string [6-8]. In the case of attraction this interaction increases the probability 
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of finding the particle near the magnetic string, so that an irregular component inevitably 
appears in the radial solution. It becomes quite obvious that the Hamilton operator is not 
self-adjoint in this case. It is the role of the irregular solutions to which we want to draw 
attention. 

Characteristic of the AB effect is the fact that a magnetic field is localized inside a 
solenoid and vanishing outside. There are many physical realizations for this. But in 
practice, physical processes, as for example quantum field theoretical processes, can only 
be studied in detail when reference to a much simpler limiting case is made: the infinitely 
thin and infinitely long, straight solenoid (the pure AB case). Thii is therefore the crucial 
situation to be studied for different matter field equations. For the radial equations in the 
Schr6dinger and Dirac case, irregular solutions cannot be excluded by the normalization 
condition. Usually at this point the mathematically cumbersome procedure of self-adjoint 
extension of the respective Hamiltonian is applied 161. It is the first aim of this paper to 
point out an equivalent pragmatic approach to the problem, which is quick and transparent. 

The resulting self-adjointness conditions do not fix the solutions but still contain open 
parameters [7 ,8] .  Their appearance reflects the fact that different original physical situations 
are described by the same pure AB case. To discuss this in detail is the second aim of this 
paper. We mention that the problem of bound states for quantum particlcs with magnetic 
moment in the AB potential is considered in detail in papers [2 ,3 ] .  

Thii paper is organized as follows. In section 2 we consider radial solutions to wave 
equations in the presence of the pure AB potential and discuss a mathematical problem 
which arises due to the singular behaviour of the potential. The problem of self-adjoint 
extension of the Hamilton operator to wave equations with the AB potential is discussed in 
section 3. We present the direct approach to the problem based on the orthogonalization 
of the radial solutions with different quantum numbers. In section 4 the problem of a 
physically adequate choice of solution is discussed. Then we discuss a model of a scalar 
particle with a magnetic moment, which allows us to illustrate why the standard method of 
self-adjoint extension contains an arbitrary parameter. 

Throughout we use units such that h = c = 1. 

2. The purr Aharonov-Bohm case 

The pure AB potenriul [I] which reads in cylindrical coordinates 

.. 
is realized by an infinitely thin solenoid lying along the z-axis. The related magnetic field 
is localized on the z-axis 

Here @o = 2 r / e  is the flux quantum. In what follows we decompose the flux 4 into an 
integer part N and a fractional part S with 0 < 6 < I ,  i.e. 6 = N + S. As we shall see, it 
is the fractional part S of the magnetic flux which produces all physical effects. 

The comesponding stationary Schrtidinger equation reads 
1 - f - iv  -@A)* +jc0,(P7 Z) = E @j;.(p, V ,  Z) 2M (3) 

where j is a collective index for quantum numbers. After separating the angular and 
z-dependence with the ansatz 

(4) $ j ( P ,  $7, z )  = e"'e"R,(P) 
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we find that the radial part Rf(p) of the solution obeys the Bessel equation 

where 2 M E  = p! + p: and I is the angular momentum projection. The general solution 
of this equation, 

RI = ~ I J I I - ~ P P )  + biJ-ic-+i(PP) (6) 

contains regular parts with Bessel functions of positive orders as well as irregular parts with 
Bessel functions of negative orders. For those 1 with II - +I > 1, i.e. for I # N or N + 1 
the normalization condition 

eliminates the irregular parts which diverge at p = 0. Accordingly we have at = 1, b1 = 0 
in this case. But for I = N or N + 1 the Bessel functions of positive and of negative order 
both are square integrable and we cannot fix the coefficients in this way so that irregular 
solutions are not excluded. These modes require a separate discussion. In what follows we 
want to contribute to a clarification of this problem. 

A similar situation occurs for the Dirac equation. Here it is also possible to separate 
variables. One finds for the p-dependant part of each spinor component a radial equation 
of the type 

where P I  = = ,/- is the radial momentum. For different two- 
spinor components s takes the values !cl, and v = I or 1 + 1. Note the appearance of 
the &function. It arises from the up"Fpv term which is implicitly contained in the Dirac 
equation. For the pure Aharonov-Bohm potential it reduces to ozB, - S ( p ) / p .  In the open 
interval (0,w) we find in going back to the full first-order Dirac equation the following 
solutions for the components of the two-spinors: 

(9) Rj = UIJI+(PLP) + brJ-c+)(plp) 

R: = ~ ~ J I + + I ( P L P )  -b iJ - i+o- i (p~ .p ) .  (10) 

and 

The normalization condition here is more complicated, but is of the same type as (7). It 
shows that for all 1 # N the Bessel functions of negative orders must be removed. For 
non-negative N for example one finds bi = 0 for 1 > N and (II = 0 at 1 < N .  Here only 
one critical mode occurs. For 1 = N each spinor component contains an irregular part. It 
is not possible to remove all of them at the same time. Therefore for I = N at least one 
component of the two-spinors becomes irregular at p = 0. So in the Dirac case the problem 
of irregular solutions of the radial equation is even more evident. 

Although the radial equations (5) and (8 )  in the Schrodinger and Dirac cases are 
essentially the same, one finds different numbers of critical modes and different conditions 
for the coefficients a and b. This is a consequence of the definition of the respective adjoint 
operator (see equation (1 1) below) which depends on the scalar product of the Hilbert space. 



2362 J Audretsch et a1 

3. The self-adjoint extension and a simple equivalent procedure 

The fact that the irregular radial solutions of the Schradinger and Dirac equatio_ns cannot 
be ignored is related to the fact that the respective Hamilton operators hl and hi are nor 
self-adjoint. Self-adjointness, however, is needed for a unitary time evolution. Consider the 
radial equation (5) for I = N or N t 1. The domain of the 'radial Hamilton operator' hf 
is given by the set D(hr) = [RI E L'((0, m), p dp) I Rl(0) = 0}, i.e. the square integrable 
functions with support away from the origin which have a regular limit for p + 0. 

The adjoint operator h j  is constructed in the following way. The domain ~ ( h t )  of hf 
consists of all states Sf for which there exists a state S; such that 

(RiIhfSd = (41S;) (11) 

for all states Rf E D(hl). Then h! is defined by h/Sr = S;. It turns out that the domains of 
hl and ht are not the same. D(hj)  also contains the irregular solutions and hr is therefore 
not self-adjoint. 

A detailed analysis of the operator hl shows that it is possible to extend its domain in 
order to make it self-adjoint. This extension essentially consists in the inclusion of heegular 
solutions in D(h1). However, because of its mathematical complexity we shall not present 
this procedure here. For an accurate and mathematically exact treatment of the method of 
self-adjoint extensions we refer the reader to [16]. 

For the Schrbdinger case this scheme of self-adjoint extension leads to the self- 
adjointness conditions 

and 

correlating the open parameters in (6) where 010 and 011 are arbitrary real numbers called 
extension parameters. We can express equations (12) and (13) in terms of new boundary 
conditions replacing Rf(0) = 0 

Iim ~ [ ( p p )  m (Mp)lfd' - a(Mp)-l'-S' - (14) 
P+O 

where 

Therefore, in order to make hr self-adjoint we have to choose as domain the square integrable 
functions that satisfy the boundary condition (14) thus allowing an irregularity at p = 0. 

The self-adjoint extension that is conshucted in this way depends on the two parameters 
ru0 and 011. It is a characteristic trait of this procedure that they remain open and cannot 
he determined without any additional information. Because of the relation to boundary 
conditions it is obvious that they must be connected with the physical details of the flux 
distribution inside the solenoid of the underlying original model from which the pure. AB 
case was obtained in a limiting procedure. 

For the Dirac case the first-order Hamilton operator reads 

S M  iap + i y  ( ia, - i y  -sM 
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for eigenstates of the spin-z operator S3 = yo& + y ' 9  and the self-adjointness condition 
for I = N obtained in the same involved mathematical procedure of self-adjoint extension 
takes the form 

M 26 
a- (") bs 

aN E + s M  M 
-= 

where IY is an arbitrary dimensionless number. For example, for a different spin projection, 
or helicity eigenstates, it differs only by a factor which is independent on P I .  

We now present an alternative, pragmatic approach to the problem of the undetermined 
parameters in (6) or (9) and (lo), respectively. It is simple and quick. 

Consider again the Schradinger case. Because regular and irregular parts are both square 
integrable, we take as solutions for I = N and N + 1 

R N  = a N J d P P )  + bNJ-dPP) (18) 

and 

R N + I  = aN+IJI-dPP) + b#+iJ-i+a(PP). (19) 

The observation is now that these solutions are not orzhogoml for different p and p' 

This results from the cross terms containing integrals over Bessel functions of opposite 
orders. Using the well known formula 

and the formula developed specifically for our purpose: 

we can calculate the integral (20). To our knowledge the integral (22) has not been solved 
before. It can be derived from the known indefinite integral (5.53) of [5] by extending the 
range of integration to (0, CO) and using the asymptotic form of the Bessel functions. The 
relation limL+m sin(xl)/x = nS(x) then leads to (22). It is easy to show that the non4 
terms which arise from (22) &e cancelled if the coefficients a and b fulfil (12) and (13). 
These conditions can therefore be derived this way. The same procedurecan also be applied 
in the Dirac case and easily leads to (17). 

Thus the orthonormality condition lead us directly to the self-adjoinmess condition, 
thereby circumventing the mathematically cumbersome procedure of self-adjoint extension. 
This is of course not just a coincidence but is related to the fact that a self-adjoint operator 
possesses a complete set of orthonormal eigenstates. 

The practical relevance of the pragmatic approach described above is to be seen in 
the fact that it shortens, for example, the calculations of quantum electrodynamical effects 
outside thin solenoids. It will be used in a subsequent discussion [17] of the bremsstrahlung 
emitted by an elechon which is scattered by the external Aharonov-Bohm potential. 
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4. The open parameters a and their physical meaning 

The pure AB case is an approximative description of a whole class of real physical situations. 
All the different configurations which in the limit of vanishing solenoid radius and fixed 
flux Q, lead to the AB potential (1) are described by it. The appearance of the open extension 
parameters (Y in the pure AB case reflects this. Different (Y correspond to different original 
situations. Therefore we have to go back to the original situation to find the specific values 
offf. 

All cylindrically symmetric magnetic fields which vanish for p > pa so that A, = @ / e p  
and satisfy 

F I I l  

lim 1 ' H ( p ) p  dp = 0 
" 0  0 

lead in the AB limit po -+ 0 to the same values of (Y. This was shown by Hagen [7] for the 
Dirac case, but applies to spinless and non-relativistic particles as well because the radial 
equations are identical. 

For Schriidinger particles we have 

(Yo=o f f , = o  (23) 

and for Dirac particles, depending on the mutual interaction of spin and magnetic field, 

0 for s@ < 0 

00 fo r s@>O.  
ff=( 

The Dirac particle carries a magnetic moment p. = (e/2M)s (s = f l )  which interacts with 
the magnetic field resulting in a potential energy -pH.  Therefore it suffers an attractive 
force if s@ > 0, i.e. if magnetic moment and magnetic field are parallel ( p H  =. 0). 
which leads to an enhancement of the wavefunction. For the Schriidinger particle such an 
interaction is not present and thus the wavefunction always stays regular at p = 0. 

Because the pure AB case allows parameter values different from (23) and (24) it is 
more general. It also describes physical situations different from the one sketched abovet. 
What, therefore, is the physical meaning of the non-trivial parameters 0 < 01 < w? We 
will give an example. 

We saw that the p-H interaction is responsible for the enhancement of the Dirac 
wavefunction near p = 0. Therefore we will consider the influence of an additional 
interaction of this type for a Schriidinger particle thus modifying the SchrMinger theoly. 
If, in the limit of vanishing solenoid radius, this new model gives the same radial equations 
as before, the self-adjoint extension procedure will apply here too. This is indeed the case, 
because the additional interaction is in this limit localized to p = 0 and the radial equation 
remains unchanged at p > 0. Now, in order to fix (Y we have to return again to the original 
physical situation and study the limit of vanishing solenoid radius. We will show that it can 
indeed lead to non-zero values of a. 

Let us consider a situation in which the magnetic flux is located on the surface of a 
cylinder. Then the vector potential and magnetic field are given by 

t We thank Dr Michael Bordag for fruitful discussions about lhis problem. 
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We modify the Schriidinger equation in assuming that the particle carries a magnetic moment 
p that couples with the magnetic field H: 

[ & (-iV - eA)’ - p H  rbj(p, p, z )  = E rbj(p.p. z ) .  

We set pz = g&. but do not specify g, and find for the radial equation 

(26) 1 

where c = 2 M E .  
The interior and exterior solutions of the radial equation (27) are. given by 

for P -= PO 

for P > PO 
(28) 

R I = {  cr J I I I ( P P )  

ai J I I -+~(PP)  + b ~  J-~I -+~(PP)  
and the matching conditions read 

which fixes a1 and bl for arbitrary PO. 

vanishing radius po 3 0, 
Inserting the series representation of the Bessel function, (29) becomes, in the limit of 

We see that for po = 0 we have again bl = 0 for all 1 unless the denominator in (30) 
becomes zero, 

(31) 
For this case we must considef the next term of the series in (29) and find that this can only 
happen for I = N or N + 1. 

The particular physical situation (2.5) ueated by the modified Schrodinger equation (26) 
can also approximately (limit po + 0) be represented as a particular pure AB case, if the 
self-adjointness conditions (12) and (13) are fulfilled. Comparison with (30) shows that this 
is indeed the case if for 1 = N g satisfies the condition 

I1 -91 + Ill - g 9  =o.  

1 
N + S  

r(-s) (y)= (IN1 - 5) + cuor(NNI + 6 )  
gn=- .  (32) 

u - 6 )  +aor(s) 

(IN + 11 - 1 + s) + alr(i - 6 x 1 ~  + I I  + 1 - s) 

and for I = N + 1 the condition 
Z(1-8) 

r(-i+ s) (9) 
2(1-6) g N t 1  = - ‘ 

N + a  r(-i+J)(Y) +alr(i-s) 
(33) 

Thus we see that the pure AB case may also describe the ‘modified’ Schrodinger particle 
that suffers an additional p-H interaction if its g-factor has the properties (32) and (33). 
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The extension parameters 010 and 011 are then determined by gN and g N + l  and need not to 
be zero, as is the case of the Schriidinger equation (3). 

In general the conditions (32) and (33) are rather exotic, because the g-factor depends 
on the angular momentum 1 and on the solenoid parameters po and @ (more precisely on 
6). The reason is that we are still dealing with the whole range 0 e a c CO of non-trivial 
parameters, i.e. with all the parameters which do not fulfil (23). Particular combinations of 
non-trivial parameters, and this is enough for our purpose, can be combined with reasonable 
physical situations: For N > 0 we may for example choose the non-trivial combination 
cuo # 0 and a1 = 0. Then we have that &$+I = 1 and gN still depends on po and 4, but it 
approaches the same value + 1 in the pure AEI case as p goes to zero: 

For N < 0 we may choose cuo = 0,011 # 0 and find gN = -1 and the same value for g N + ,  

in the limit of vanishing solenoid radius po. Thus we have obtained the result that in the pure 
AB case the self-adjoint extension in which one of the parameters is non-zero may describe 
a ‘modified’ Schrodinger particle obeying (26). It carries a magnetic moment oriented 
such that p H  z 0. This model provides one possible physical explanation of non-trivial 
parameter values which arise from the self-adjoint extension method. The p-H interaction 
that we put in by hand here is already present in the Dirac and Pauli equation. Therefore the 
inclusion of an additional (anomalous) magnetic moment can explain particular parameter 
values there. This completes our presentation of a physical situation which may be described 
by the pure AB case with a non-hivial combination of extension parameters. 

5. Conclusion 

We analysed the problem of the self-adjoint extension for the Hamilton operator containing 
the pure AB potentia;. Using a pragmatic approach based on a direct procedure which 
allowed us to make radial solutions orthogonal at different quantum numbers, we reproduced 
in a straightforward manner results which follow from the standard method of self-adjoint 
extension. Regression to the original physical problem leads to definite values for the 
extension parameter depending on the specific form of the interaction with the magnetic 
field. In the framework of a simple model of a charged particle with an exotic magnetic 
moment (modified Schrodinger theory) we explained why the standard extension method 
contains an arbitrary parameter and gave a physical meaning to non-trivial values of this 
parameter. 
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